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I. It is generally stated that the betatron oscillation

, k =
Y

integexs) are due to n—th derivatives of the magnetic field

resonances of the type n v+ n, vy = k (nx, n
G"BAx" , 3™"B/y", etc.), where n = ]nxf + ]ny]'— 1, pro-
vided that the radius of curvature and the betatron period
are both large compared with magnet lengths; For example)
a sextupole field (n=2) produces third-integer resonances
(3\)x = k, Vo + 2vy = k, et§.) and an octupole'field (n=3)"
gives rise to quarter-integer resonénces (4v = k,'ZvX +
2vy = k, etc.). It is therefore natural that, when quarter-
integer resonances were detected in the main ring at 8 GeV
(injection), the analysis was attempted to ﬁnderstand the
phenomena in terms of the octupole field which exists in
quadrupoles.l However, the magniﬁude of the octupole field
necessary to explain the resonance was almost an'order of

magnitude larger compared to the result of magnetic field

measurement. Furthermore, it has been observed that
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quarter—integer resonances are rather sensitive to the
setting of correction sextupoles which are used to suppress
the nearby third-integer resonances 3v, = 60, 61 and

Ve + 2vy = 60, 61.

A similar problem was discussed'during the recent PEP
Summer Study in connection with the long-term beam stability
in PEP and ISABELLE.Z' In both cases, sﬁperconducting magnets
will be uséd for the proton ring so that a fairly strong
sextupole field is unavoidable. Presumably, correétion
sextupoles will be instailed around the ring to compensate
for the chromaticity (momentum dependence of tunes) and to
eliminate harmonic components of the sextupole field that
can drive nearby third-integer resonances. Numerical studies
ét BNLidemonstrated that, under this kind of‘arrangement, the

beam size grows when the tune is near a quarter-integer _value.3

There is nothing mysterious about sextupole field being a
cause of quarter-integer resonances. It has been known, at
least theoretically, for many yea#s.4 The statement on the
relation between the order of a resonance, |n_| + Inyﬂ, and
the order of the field derivative, n, is valid when one
'retains only the so-called "driving" term and the "phase-
independent" term in the Hamiltonian and ignores all other
terms which are of oscillating form. By means of a canonical
transformation, one can show that these oscillating terms
not only modify the original resonance but can also drive

many other resonances as well when the tune satisfies a
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resonance condition. While the qriginal (first-~order)
driving term is proportional to a specific harménic compo~
nent of the field, driving terms arising from oscillating
terms in the original Hamiltonian are proportional to the
product of two (or more) harmonic components so that their
effects are usually negligible. On the other hand, if the
first-order resonance is very weak (because of correction
elements or the tune is too far away from the'fesonance
value), second-order resonances can caﬁse a serious growth
in beam size when the tune is just "right" for one of these
resonances. In the main ring, the horizontal tune is

20.2 v 20.3. One can suppress the resonance.3vk = 61 by
correction sextupoles with the proper 6lst harmonic cbmpo—
nent. However, the product of n-th ahd (81 i‘n)th harmonic
components can drive the resomnance 4vx = 81 if the tune is
very close to 20.25. A combination like 54th and 27th, 60th
and 21st, etc. may be especially dangérous since all (6n)th
harmonic components of the sextupole field are intrinsic in

the main ring.

Unfortunately, the picture is much more complicated in
reality. There are small but finite amounts of nonlinear
fields with n 2 3. For a sufficieﬁtly large amplitude of
the betatron oscillation, many different resonances contri-
bute and their'effects may overlap in a complicated manner.
Thefe is as yet no general analytical treatment for this

"stochastic" situation.5 Second-order effects of sextupole

field must be partially responsible for driving the quarter-
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integer resonance in the main ring but it is unlikely that

they are the sole cause. ®

The main purpose of this néte is simply to emphasize
the known fact, that Sextupole fields can drive quarter-
integer resonances when the second-order effect is taken
into account. In section II, relevant formulas are given
only to the extent that general characteristics of the
second-order effects may be seen. The real main rihg field
is not amenable to an analytical treatment since there is
no simple relation among amplitudes and phases of harmonic
components. Therefore, in section III, the formalism is
applied to two simple models with d§-function sextupoles.
Hopefully thesé models simulate the essential feature of
the main ring. The prediction based on this analysis is

then compared with numerical results.

II. Since detailed, stép-by—step constructidns of the fdr—
malism are available elsewhere4, a very limited case of a
linear machine with sextupole fields alone will be discussed
here. Horizontal-vertical coupling resonances arising from
the sextupole field are not considered. The betatron oscil-
lation of a particle is described by a Hémiltbnian H(Y, I;9)
in which the independent variable ¢ is the normalized be-
tatron oscillation phase
S ds

¢ = j VB (5) | (1)

o

and the canonical variables (¢, I), which are called the
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action-angle variables, are related to the transverse
coordinate x of the particle by

x = /8! /2T' sin(y) (2)
dx/ds = 2 2I' <cos{(y) - o sin(y)> (3)
VB’

Other symbols are standard in the treatment of betatron
motions. With the integrated field strength of each

sextupole (B“l)i, the Hamiltonian is

H(Y,I;¢) = vI +_(21)3/2 L X Akm cos(ky - mp + akm)
where k = 1 and 3, m= —a0n00 and
ia — 3/2 [ l (m¢' + '"/2) 4
A3m e "3m = (1/48w) (1/Bp) ? -Bi (B ﬁ)i e i (5)
B = 3B3p v 33y = agy + oM. (6)

In the absence of sextupole field (Ak'm = 0),
v =[@rATIAY = v

so that each sextupole term in the Hamiltonian is approxi-

mately given by

Ay cosdky - m) ¢+ qm” -

The term with |kv - m|<< 1 is called the driving term for

the resonance v = m/k and, in the first—order approximation,
all other oscillatory terms are ignored as their effects

will not increase with the number of revolutions. In the main

ring, when the tune is close to 20 1/3, the driving term is
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the one with k = 3 and m = 61. If the tune is very close
to 20 1/4, there is no driving term* in the Hamiltonian so
that one would expect the beam to behave as if the machine

were entirely linear.

One must proceed to the next order of approximation to
see that this is not the case. This can be done by means of
a canonical transformation to new variables © and J. The

generating function is

A
S, 3; 0 =93 + 2032 B ginky - mp +a ) (D)
and
I =3spy=a+ (23)3/2 —]—{i@~cos(kw—m¢+a ) (8)
m - kv km’ ’
@ =03S/RJ =y + (.2J)]‘/2 Z-Eﬁhm— sin(ky — m$p + a,__) (9)
m - kv km’ *

The new Hamiltonian is

R(6, J; ¢) = H(b, I; ¢) +0S/3¢ =

= vJ +_<(2:[)3/2 —(2J)3/2> L Akmcos(kw - md + a

).
k,m km
(10)

The new Hamiltonian contains, in addition to the linear term
vJd, an infinite number of terms proportional to Jn/2, n =4,

5, «... The lowest-order term proportional to J2 represents

an octupole-like characteristic. If one started with an

*One may still regard the term with k=3 and m=61 as the dr1V1ng
term since it has the weakest dependence on ¢. However, the
stable area in this approximation comes out to be generally

much larger than the area occupied by the field, clearly a
meaningless result.
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octupole field instead of a sextupole field, the original
Hamiltonian H would have (2I)2 terms in place of.(21)3/2

terms. In the lowest-order approximation,

2 kA, AL
K(0, 35 ¢) = vJ + (3/2)(20)% 5 3 BI04
. “k,m j,n \),
X{cos <(ji-k)@ - (n-m)¢ + a5 T gy >
+ cos < (j+k)0 - (n+tm)¢d + a, + ay >} (11)

jn
Since j, k = 1 or 3, possible resonances are of the type

2v = integer, 4y = integér and 6v.= integer. The Hamilto-
nian also contains phase-independent terms (j=k and n=m),
another characteristic of octupole field, that are réspon—
sible for the dependence of the tune on the oscillation
amplitude. Phase-independent terms‘tend to limit the growth
of the amplitude to a finite value creating islands of stable
regions outside the central stable.area. On the other hand,
for aigiven‘value of v, the central stable area 1s reduced by

these terms so that they are not necessarily beneficial.7 _

Keeping only phase-independent terms and driving terms

for 4v = N when the tune is close to N/4, one finds

2
kA
2 km
K=vJ] 4+ (3/2)(23)" £ & gy
kA, A,
2 km in _
+ (3/2) (2J7) ﬁ i = v cos (40 N¢ + a + ajn)
(12)

with j 4 — k and n = N - m. Aside from the obvious fact

that driving terms are now proportional to products of two

harmonic components AkmA there is an important difference

jn’
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between the original Hamiltonian H and the new Hamiltonian
K. 1In K, the amplitude of driving term (and the magnitude
of phase—independent.term) depénds strongly on the value

of v whereas it is entirely independent of v in H. In terms
of new variables_@ and J, oné can express x and dx/ds by

the following relations:

x = VB /21 sin(y) = V/B'E . (13)
dx/ds = (1//B) /2I'<cos(y) - a sin(y) >
= (/B (n - af) (14)
3A av2 4 w2yl
E =X + i_m — v<2XYcos(am) + (37 +.X )sin(a )>
LM oxveos(a) + (v2 - xP)si >
Ty cos (a_ (Y" - X%)sin(a ) (15)
=Y - I °2m .(3x2 + %) cos ’) + 2X¥sin( |
n=Y Ia= < Y¥7)cos(a } sin(a_ ) >
3Am 2 2
+ Z Ef:—§3-<(Y_ - X%)cos(a ) - 2X¥sin(a ) >
m (1e6)
where
An = Bap (= Alm/3); % = agn (= 2y, - ™). (17)
X = V2J3'sin(@) and Y = /23 *cos (0) . (18)

The Hamiltonian K is still a function of the independent
variable ¢ so that it is not a constant of the motion. This
¢ dependence is eliminated by a transformation from (e, J)

to a rotating system (Ol = 0 -N ¢/4, J) and the correspond-

ing Hamiltonian is
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K2 (Q’.J) f_A J + (ZJ)'~<SO f.Slcqs(4Ql + a)> (19)
where
A=z v - N/4r ‘ (20)
| k’Aim |
SO = (3/2) 1—m———— , , (21)
k,m m - kv
Sl cos(4el + a)
kAkmA.n

= (3/2) 1——2— cos(4e, + a .t oas ). (22)
Note that there is no difference between © and 0, at ¢ = 0,

1
8n/N, 1l6n/N, etc. At other locations, the phase space pic-

ture in (X,Y) space can be found by simply rotating (clock-

wise) the picture at ¢ = 0 by N¢/4.

"III.Once the Hamiltonian’Kz(Ol,.J) is obtained, the procedure
of finding stable and unstable fixed points together with
resulting Separatrices is well known. One draws a phase

space diagram (K2 = constant) in (X, Y)'qucef rotates it by
N¢/4 if hecessary and finds the corresponding diagram in

(x, dx/ds) space by means of (13) —‘(16). Unfortunately, this
is not easy to do for the main ring. 1In principle one must
know all A | and a

km km
perform the necessary summations in (15), (16), (21) and (22).

for the sextupole field in order to

One might keep only a few dominant terms (lm - kvl small)

* X = Y23 sin 0, Y = /2J cos 07.

ll
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in the summation but the resulting accuracy would be hard
to estimate. Therefore, two simple cases have been studied
to get some feelings on the importance of the higher order
effects and to compare the analytical prediction with
numerical results. In both cases, sextupoles are of the
§—-function form and they are arranged at an equal interval

around the ring. Summations are then possible without

dropping any term.

Case A
Three sextupoles of strength B"% each are located at
$ = /3, m, and 57/3 where B = BS. " Because of the three-

fold symmetry, Ao vanishes unless m is a multiple of'3.

From (5) and (6),

. _ 3/2 BIIR‘ - )
Ay = A3 = (Bg /16T) Bo - A, (23)
'ajﬁ = an —‘ﬂ =‘w/2'for‘m/3 = even -

= - 1/2 for m/3 = odd. (24)
The tune of the machine is assumed to be near 20.25 and
the resonance one is interestéd in is 4v = 81 (N = 81).

From (21) and (22))*

S, =v(3ﬂ/2)A2<'— cot(em) + 3 cot(e'w) >, (25)

b~

¥ (n/2) tan (aw/2) for n=positive and negative
odd integers,

o]
t+
o

* %
n

I

+ (m/2) cot (am/2) for n=0, positive and
negative even integers.
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Sy =‘(3ﬂ/2)A2ﬂ Bﬂcqt(eﬂ) f.cqp(e!n)>,_ ~(26)
where € = (v — 20) and €' = (21 - v)/3. Note that
a + a. = 7w in (22) so that one can put a-= 0. From

km jn
(15) and (16),

E=X+ A<,(Y?-X2)/sin(en) - (X2+3Y2)/sin(e'n)>,
. (27)
Y + 27 AXY< 1/sin(ern) + 1/sin(e'm)> . - (28)

I

n

Both phase-independent terms So and the amplitude of driv-
ing term S, in the Hamiltonian K, are a function of the tune.

In particular, 55> Slkfor v> 20.25 while SO<Sl for v< 20.25.

Unstable fixed points are at Ol =0, w/2, 7, and 3w/2

with
A | '
(23) = - . (29
IS+ 87 ,)

They exist only for A< 0 (v< 20.25) since J > 0 for real
values of x and dx/ds. Stable fixed points are located at

@l =‘ﬂ/4,.3ﬂ/4, 57/4 and 7w/4 with

A . (30)

- 4($l - So)

(23)

Because of the tune dependence of SO and Sl' these stable
points do not exist either for v> 20.25 or for v< 20.25.
Therefore, in the second-order approximation, the analytical
prediction is

v> 20.25 no fixed points

v< 20.25 four unstable fixed points which

coalesce to J = 0 (x=dx/ds=0) at
v = 20.25.
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A computer program has been used to find fixed points
for a given configurafion of sextupoles. Parameters chosen
ior this case are: B"& = 50 kG/m, Bp = 296.5 kG-m (injec-
tion) and BS = 100 m. With this choice, harmonic compo-
nents for m = 6k(k = + 1, + 2, ...) are approximately
the same as what exist in the mein.ring when no harmonic
correction is applied. The average term, m = 0, is much
larger than this in the main ring but correction sextupoles
for the chromaticity reduce it to the same level or less.
Components wiﬁh m=3k (k=+1, + 3, ..;) are due to the
fluctuation in B"% frem magnet to magnet and they are
10 - 15% of what is used in this model. Also, there should
be no simple phase relation among harmonics so that the
choice of B"£'= 50 kG/m is clearly an overestimate. There
are, of course, other harmonic components (m =+ 1, + 2,
+ 4, ...) as Well in the maln rlng but they are not con51dered
in this model. The analytlcal predlculon is compared with
numericaily computed values of three unstable fixed points
in Table 1. Agreements are very good when the tune is not
too far away from 20.25. As predicted analytically, there
is no fixed point for v> 20.25. For a large value of
(20.25 - v), fixed points are located at long distances
from the origin (large values of J) and the neglected higher
order terms become important. Higher order terms are also
responsible for the appearance of outer stable.fixed points

which are not predicted analytically but are found numeri-

cally for v< 20.25. Although they too coalesce to the
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origin.at v =.20r25,zthe "speed" of the coalescence is
much slower thap.that of,unstable.poinﬁs; As a conse-
quence, while the central stéble’area shrinks as v
approaches 20.25 from below and disappeafs beyond 20.25,
four islands of outer stable area around stable points

stick out like four petals of a flower and remain that

- way even beyond 20.25. Since there is no fixed point’

beyond 20.25, particle trajectories in (x,dx/ds) épace
are all around the origin but they are substantially dis-—
torted because of the. lingering of these shapes. Numeri-
cally obtained fixed points are plotted in Figure 1

and sometrajectories near v = 20.25 are shown in Figure 2.
Scales in Figure 2 for x and dx/ds are chosen such that
trajectories are all circular if B"¢ = 0 (or B" = 0 but
the first-order effect only). The serious nature of the

second—-order effects is clearly seen here.

Case B

In order to make the model somewhat more realistic, six
sextupoles are distributed around the,riﬁg at an equal
interval with the strength |

B"% = - 25. (1 + £)kG/m n/6, 51/6, 3w/2;

.8
-
1l

- 25. (1 - f)kG/m

¢ = m/2, Tn/6, 111/6.

From (5) and (6)

Il

_ 3/2.,; _
Ay = Byn/3 = (827%/8m) (25/Bp) = A

C 3m
for m = 0,

|+

6, + 12, etc.,
= fA form =+ 3, + 9, eﬁc.,

= 0 for m = +1, + 2, + 4, etc. : (31)
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as. ='*ﬂ/szqr m/§_='Q,qr an even inﬁgger,
= m/2 for m/6 = an odd integer, .
= 0 for (m - 3)/6 = 0 or an even integer,
= m for (m — 3)/6 = an odd integer;
qm T B3 T T . | (32)

By taking f = 0.15, one simulates the sextupole field in
the main ring fairly well as far as the amplitude of each
harmonic component is concerned. Phase relationé are of
course impossible to simulate. Dropping terms of the order

fz, one finds

S = (37 A2/4)< COt(Eﬂ/Z) + 3 tan(e'n/2)>, (33)
Sl = (3w fAz_/2)< 3cot(em)- cot(e'm)>, (34)
e = v - 20, et = (21 - v)/3,

and
oy 2 .
Ky(0,, J) = A J - (23)7. <8  + 8; sin(4 0,)>, (35)
A= v - 81l/4.

Note that, in (22}, 31m + ajn = 31/2 and the driving term

is proportional to sin(4 Gl) instead of cos (4 el). From

(15) and (16);

£ =X + (m A/2) . < (X2 -\Y%)/sin(en/Z) -

- (X2 +H3Yg)/cos(e'ﬁ/2)>_
- fAXY. < 1/cos (en/2) + 1/sin(e’n/2)> E . (36)

*Contributions from m # 3k in the main ring are again ignored
here. They are of the order £2.
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n =Y + mAXY. < 1/cos(e'n/2) - l/sin(en/2)>
. 2 2. ,
+ (nfA/2). < (¥ - X")/cos(en/2) +
2 2, 4 . ' '
+ (3X° + ¥%)/sin(e'n/2)>. (37)
With £ = 0.15, S > §; for v< 20.25 as well as for v>
20.25. TUnstahle fixed points are at el = /8, 5u/8,
91/8 and 137/8 with
- A . (38)
(23) =
4(S0 + Sl)

These points exist only for A > 0 (v > 20.25).3 Stable
fixed points are at Oi = 37/8, 7%/8, liﬂ/S and lSﬂ/S
with

| A . | : (39)

(23) = I(s, - 57) d

They too exist only for v> 20.25 since S, > Sq- The ana-

vlytical prediction is:
v< 20.25 no fixed points
v> 20.25 four stable and four unstable fixed
points, all of which coalesce to
J =0 at v = 20.25. '
The situation is opposite to what happened for Case A.
This conclusion is independent of the sign of B“l. Be-
cause of the small factor £ in Sl’ distance to unstable
points and stable points are not much different from each .
other at a given value of v and the distortién of particle

trajectories should be less pronounced for this case. A

series of stable and unstable fixed points are listed in
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Table 2. Agreements of analytical values with numerical
results are again generally good when the tune is close
to 20.25. No fixed point was found by the computer
program for v< 20.25. All fixed points are shown in

Figure 3 and some trajectories for v = 20.2505 are given

in Figure 4.

I am grateful to A.G. Ruggiero for calling my attention

to this problem.
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Tabhle 1. . Unstable fixed points for Case A

" -

n

i

0, 8n/81, 16m/81,

x// 8

------

/8 (dx/ds) + (a//B) x

All values are in 1073 (meter)l/z. For each v, the

first row is analytical and the second row is numerical

results.

(20.25 -~ v)

0.3

0.005
0.002

0.0005-

Np =3 = 0. & £, =

.628
.718

- .333
- .355

- 171
=177

.0695
-.0704

-.01752
-.01757

5.74
5.87

4.75
4.81

3.395
3.416

2.414

2.421

1.532

1.534

.7672
.7674

gl' n4 =

TM~448
0402



-19- - TM=448
0402

Tahle 2. Fixed points for Case B.

$ = 0, 81/81, 167/B1, .....
C o= x/VB
n = /8 (dx/ds) + (a/V/B) x

All values are in 1073 (meter)l/2, TFor each v, the first
row is analytical and the second row is numerical results.
Only one series of unstable and stable fixed points out of

four are given here.

unstable stable

(v - 20.25) g n , 3 n
0.03 1.34 7.93 9.07 . 3.83
1.50 7.81 '9.54 3.60
0.02 1.38 6.34 7.37 3.07
1.47 6.31 7.67 2.99
0.01 1.22 4.40 5,18 2.14
1.26 4.43 5.35  2.14
0.005 0.981 3.08 3.65 1.50
1.00 3.13 3.76 1.53
0.0005 0.373 0.971 1.15 0.474
0.380 0.990 1.18 0.488
0.0001 0.174 0.435 0.514 0.212

0.178 0.443 0.528 0.219
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